Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.30.029736

ABSTRACT

Since SARS-CoV-2 became a pandemic event in the world, it has not only caused huge economic losses, but also a serious threat to global public health. Many scientific questions about SARS-CoV-2 and COVID-19 were raised and urgently need to be answered, including the susceptibility of animals to SARS-CoV-2 infection. Here we tested whether tree shrew, an emerging experimental animal domesticated from wild animal, is susceptible to SARS-CoV-2 infection. No clinical signs were observed in SARS-CoV-2 inoculated tree shrews during this experiment except the increasing body temperature (above 39{degrees} C) particular in female animals during infection. Low levels of virus shedding and replication in tissues occurred in all three age groups, each of which showed his own characteristics. Histopathological examine revealed that pulmonary abnormalities were mild but the main changes although slight lesions were also observed in other tissues. In summary, tree shrew is not susceptible to SARS-CoV-2 infection and may not be a suitable animal for COVID-19 related researches.


Subject(s)
COVID-19 , Pulmonary Embolism
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.08.031807

ABSTRACT

COVID-19, caused by SARS-CoV-2 infection, has recently been announced as a pandemic all over the world. Plenty of diagnostic, preventive and therapeutic knowledges have been enriched from clinical studies since December 2019. However, animal models, particularly non-human primate models, are urgently needed for critical questions that could not be answered in clinical patients, evaluations of anti-viral drugs and vaccines. In this study, two families of non-human primates, Old world monkeys (12 Macaca mulatta, 6 Macaca fascicularis) and New world monkeys (6 Callithrix jacchus), were experimentally inoculated with SARS-CoV-2. Clinical signs were recorded. Samples were collected for analysis of viral shedding, viremia and histopathological examination. Increased body temperature was observed in 100% (12/12) M. mulatta, 33.3% (2/6) M. fascicularis and none (0/6) of C. jacchus post inoculation of SARS-CoV-2. All of M. mulatta and M. fascicularis showed chest radiographic abnormality. Viral genomes were detected in nasal swabs, throat swabs, anal swabs and blood from all 3 species of monkeys. Viral shedding from upper respiratory samples reached the peak between day 6 and day 8 post inoculation. From necropsied M. mulatta and M. fascicularis, the tissues showing virus positive were mainly lung, weasand, bronchus and spleen. No viral genome was seen in any of tissues from 2 necropsied C. jacchus. Severe gross lesions and histopathological changes were observed in lung, heart and stomach of SARS-CoV-2 infected animals. In summary, we have established a NHP model for COVID-19, which could be used to evaluate drugs and vaccines, and investigate viral pathogenesis. M. mulatta is the most susceptible to SARS-CoV-2 infection, followed by M. fascicularis and C. jacchus. One Sentence SummaryM. mulatta is the most susceptible to SARS-CoV-2 infection as compared to M. fascicularis and C. jacchus.


Subject(s)
COVID-19 , Viremia , Severe Acute Respiratory Syndrome , Feline Panleukopenia
SELECTION OF CITATIONS
SEARCH DETAIL